Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Gang Yin,* Heng-Yu Qian, Jia Jia and Chun-Xia Zhang

School of Materials \& Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail:
hengyuqian@yahoo.com

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.056$
$w R$ factor $=0.130$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(1-Ferrocenylethyl)- N -(1-phenylethyl)methylamine

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}\right)\right.$, was synthesized by reductive methylation of the corresponding secondary amine. In the crystal structure, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed between neighboring molecules.

Comment

Ferrocenylalkylamine derivatives have been used in asymmetric catalytic hydrogenation (Hayashi et al., 1986), allylic substitution (Sawamura \& Ito, 1992) and aldol reactions (Togni et al., 1996). The structure of 1-ferrocenyl- N-(1phenylethyl)ethylamine (Qian et al., 2005) has been reported by our group. As part of our study of the cyclopalladation of tertiary amines, the crystal structure of the title compound, (I), is presented here.

The molecular structure of (I) is shown in Fig.1, and selected bond lengths and angles are given in Table 1. The cyclopentadienyl rings of the ferrocene moiety are parallel to each other, with a dihedral angle of $2.7(3)^{\circ}$. Atom N1 is coplanar with the C11/C12/C13 plane, the deviation being 0.022 (4) A. Atoms C 11 and N1 are displaced from the benzene plane by 1.308 (5) and 1.261 (4) \AA, respectively.

In the crystal structure of (I), molecules are linked by C $\mathrm{H} \cdots \pi$ interactions $\left[\mathrm{H} 7 A \cdots \mathrm{Cg} 1^{\mathrm{i}}=3.10 \AA\right.$ and $\mathrm{C} 7-$ $\mathrm{H} 7 A \cdots C g 1^{\mathrm{i}}=153^{\circ}$, and $\mathrm{H} 8 A \cdots C g 2^{\mathrm{ii}}=3.14 \AA$ and $\mathrm{C} 8-$ $\mathrm{H} 8 A \cdots C g 2^{\mathrm{ii}}=126^{\circ}$, where $C g 1$ and $C g 2$ are the centroids of the C 1 -containing and C 13 -containing rings, respectively; symmetry codes: (i) $1-x, \frac{1}{2}+y, 1-z$; (ii) $\left.1-x, \frac{1}{2}+y,-z\right]$.

Experimental

Sodium borohydride ($185 \mathrm{mg}, 5 \mathrm{mmol}$) was added to a methanol solution (15 ml) containing α-ferrocenyl- N-(1-phenylethyl)ethylamine ($333 \mathrm{mg}, 1 \mathrm{mmol}$) and 37% aqueous formaldehyde (1 ml , 12.5 mmol). The reaction mixture was stirred for 5 h at 273 K and evaporated under reduced pressure; the product was extracted with diethyl ether. The tertiary amine was purified by chromatography on silica gel developed with hexane-ethyl acetate (2:1) as eluant in 86% yield and recrystallized from dichloromethane/hexane (2:1). Single crystals of (I) were obtained after 3 d . IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 3421, 3079,

Received 4 January 2006
Accepted 8 February 2006
\qquad

metal-organic papers

$2983,1615,1484,1446,1120,1000,822 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.25-7.39$ $(m, 5 \mathrm{H}), 4.10-4.11(m, 4 \mathrm{H}), 4.02(s, 5 \mathrm{H}), 3.79(d \times d, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}$ and $J=12.9 \mathrm{~Hz}), 3.49(d \times d, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}$ and $J=12.6 \mathrm{~Hz}), 1.92(s$, $3 \mathrm{H}) 1.37(d, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.24(d, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$; Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FeN}$: C 72.62, H 7.20, N 4.03%; found: C 72.38, H 7.49, N 4.13\%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}\right)\right]$
$M_{r}=347.27$
Monoclinic, $P 2_{1}$
$a=5.8833$ (12) £
$b=10.748$ (2) A
$c=14.191$ (3) \AA
$\beta=97.82$ (3) ${ }^{\circ}$
$V=889.0(3) \AA^{3}$
$Z=2$
$D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 714 reflections
$\theta=2.1-12.4^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, orange
$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.849, T_{\text {max }}=0.876$
5026 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.130$
$S=1.07$
3239 reflections
208 parameters
H-atom parameters constrained

Figure 1
The structure of the molecule of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: $S H E L X T L$.

The work was supported by the Startup Foundations for Natural Science of Zhengzhou University of Light Industry (Nos. 2005001 and 000455).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hayashi, T., Konishi, M., Okamoto, K., Katsumura, K. \& Kumada. M. (1986). J. Org. Chem. 51, 3772-3781

Qian, H.-Y., Cui, X.-L. \& Yin, Z.-G. (2005). Acta Cryst. E61, m2641-2642.
Sawamura, M. \& Ito, Y. (1992). Chem. Rev. 92, 857-871
Togni, A., Burckhardt, U., Gramlich, V., Pergosin, P. S. \& Salzmann, R. (1996). J. Am. Chem. Soc. 118, 1031-1037

[^0]: (C) 2006 International Union of Crystallography All rights reserved

